
How TROLL Solves a
Million Equations

Sparse-Matrix Techniques for
Stacked-Time Solution

of Perfect-Foresight Models

CEF 2008
Peter Hollinger

Intex Solutions, Inc.

Nonlinear Forward-Looking Model
gi,t (y1,t+s,... yN,t+s, y1,t,... yN,t,... y1,t-r,... yN,t-r) = 0

gt (yt +s,..., yt ,... yt-r) = 0 yt ≡ (y1,t ,… yN,t) gt ≡ (g1,t ,… gN,t)

Note: can be transformed to 1-lag, 1-lead form:
gt (yt +1, yt , yt-1) = 0

Stacked-Time Solution
Choose a long time-horizon, T, and stack equations:

f (z) = 0 z ≡ (y1,…yT) f ≡ (g1,…gT)

Given initial guess, z(0), find z* such that: f (z*) ≈ 0

Newton’s Method
Solve f (z) = 0

Jacobian Matrix: J ≡ {∂fi/∂zj}
Preprocessing: Incidence Matrix, Symbolic Derivatives

Newton step: ∆z(k) = − (J|z(k))-1 f(z(k))

Newton iteration: z(k+1) = z(k) − J(k)-1 f (k)

Damped Newton: z(k+1) = z(k) − α J(k)-1 f (k)

Jacobian Matrix Step: J-1 f
• Most expensive part of Newton’s Method
• Often solved by LU factoring: J = LU

cost = O(n3) (standard “dense” LU)

• J can be large: n=NT for stacked-time
e.g., 2000 eqns × 500 periods = 1,000,000 rows

• But J is very sparse:
Most equations have only a few variables;
the rest of the row is “hard” zero.

Main methods for solving sparse matrix
• Direct Sparse LU

– reduce cost by skipping calculations with zeros
– chose pivots to minimize fill-in but maintain accuracy
– may be implemented in three stages:

1) [Analyze and] Factor (slow)
2) Refactor same pattern (fast, if pivots still OK)
3) Solve (fast)

• Nonstationary Iterative Solver
– iterations use matrix-vector product and “preconditioning”
– preconditioner must give fast approximate solution
– unsymmetric methods include FGMRES, CGS, BiCGstab

Sparse-LU Codes in TROLL
• MA30 (Duff & Reid, Harwell, circa 1980)

– very fast Refactor stage
– initial Factor step too slow for huge matrices

• UMFPACK 5.0 (Tim Davis, UFL, 2006)
– fast Factor, but Refactor is no faster
– modern code: takes advantage of BLAS

• PARDISO (Schenk & Gärtner, 2004)
– bundled with Intel Math Kernel Library 9.1
– fast Factor & fast Refactor
– can be inaccurate on ill-conditioned system

Sparse-LU Codes (cont.)

• “PARDCGS”: PARDISO with CGS feature
– PARDISO for initial Factor and Solve
– skip Refactor
– solve by CGS, initial factoring as preconditioner

• “UMFITER”
– UMFPACK for initial Factor and Solve
– skip Refactor
– solve: FGMRES, initial factoring as preconditioner

Both give extremely fast Refactor but slow Solve.

Symbolic Jacobian for Stacked-Time
Derivatives of N equations with respect to N

variables at all leads and lags:
← lags current leads →

yt–3 yt–2 yt–1 yt yt+1 yt+2

← variables(lags) →

↑
equations

↓

All squares are sparse, particularly the leads and lags.
“yt” square must be non-singular; diagonal can be made nonzero

Stacked Jacobian has a regular structure:
t=1

t=2

t=3

t=10

t=T

t=4

t=5

t=6

t=7

t=8

t=9

Each row of squares has the same pattern of nonzeros

Three ways to take advantage of sparsity:

1) Full-Stack LU (FSLU, aka “OLDSTACK”)
– permute entire stack to block-triangular form
– solve minimal simultaneous blocks with sparse-LU
– one Solve per [Re]Factor

Full-Stack LU
Permute stack to minimal simultaneous blocks:

→

Typically one huge block

Three ways to take advantage of sparsity:

2) Block-Band LU (BBLU, aka “NEWSTACK”)
– triangularize period-by-period using sparse-LU
– blocks fill in (~10%); pattern becomes fixed
– numerical stability requires block-diagonal-dominance
– many Solve steps per [Re]Factor

Block-Band LU
Triangularize stack period-by-period:

I
I

I
I

I
I

I
I

I
I

I

→

(while transforming RHS)
followed by block-back-solve

Three ways to take advantage of sparsity:

3) IterStack
– nonstationary iterative method on entire stack (FGMRES)
– sparse-LU on several periods at once as preconditioner
– FGMRES may fail to converge: inaccurate Newton step
– very many Solve steps per [Re]Factor

IterStack
FGMRES preconditioned by LU on several periods

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=T

In this example,
LU is applied to
5 periods at once
and to the single
leftover period

Sensible combinations

• FSLU needs fast [Re]Factor for huge matrix
– UMFITER (faster than UMFPACK)
– PARDCGS (faster than PARDISO)

• BBLU needs fast Solve; “small” matrices
– MA30

• IterStack needs fast Solve; matrices not huge
– MA30

Three Test Models
• GIMF from the IMF
• QUEST from the CEC
• QPM from the Bank of Canada

Variants of:

Dubbed ‘A’, ‘B’ and ‘C’ (no particular order)

Equations Simultaneous Max Lag Max Lead

A 2141 965 -2 2

B 1736 1252 -3 3

C 1037 870 -7 1

Model ‘A’ Summary
• PARDISO & PARDCGS failed

– too ill-conditioned?
• UMFITER fast but ran out of memory

– ~2GB by 200 periods
• IterStack worked very well

– 50-100 FGMRES iterations (per Newton iter.)
– about as fast as UMFITER, much less memory

• BBLU worked OK
– less memory than IterStack, but a lot slower

Model ‘B’ Summary
• PARDISO & PARDCGS failed

– too ill-conditioned?
• UMFITER needed too much memory

– >2GB by 200 periods
• BBLU worked very well

– fast, moderate memory
– converged in 4 Newton iterations

• IterStack needed too many FGMRES iters
– ~500 FGMRES iterations, extra Newton iters (6)
– needed extra restart space so extra memory

Model ‘C’ Summary
• UMFITER needed too much memory

– >2GB by 200 periods
• IterStack failed

– >500 FGMRES iterations, too inaccurate
• BBLU worked OK

– moderate speed, modest memory
• PARDCGS worked very well

– extremely fast
– converged in 5 Newton iterations (same as BBLU)

Conclusions
• No method is “best” for all models

– need to experiment for each model

• IterStack somewhat disappointing
– works well for some models, not others

• Modern sparse-LU codes make
“OLDSTACK” competitive again.
– but may need a lot of memory

Future Work
• IterStack improvements?

– try other solvers (CGS, BiCGstab, QMR)
• less memory than FGMRES

– block-triangular preconditioner?
• Other Sparse-LU codes?

– HSL MA50 (successor to MA30)
– MUMPS
– WSMP

• Use dynamics to shorten time horizon
– linearized around the steady-state
– will still need to be verified against full stack

The End

Presented at the 14th Annual Conference on
Computing in Economics and Finance

June 26-28, 2008
University of Sorbonne

Paris

	How TROLL Solves a Million EquationsSparse-Matrix Techniques for Stacked-Time Solution of Perfect-Foresight Models
	Newton’s Method Solve f (z) = 0
	Jacobian Matrix Step: J-1 f
	Main methods for solving sparse matrix
	Sparse-LU Codes in TROLL
	Sparse-LU Codes (cont.)
	Symbolic Jacobian for Stacked-Time
	Stacked Jacobian has a regular structure:
	Three ways to take advantage of sparsity:
	Full-Stack LUPermute stack to minimal simultaneous blocks:
	Three ways to take advantage of sparsity:
	Three ways to take advantage of sparsity:
	IterStackFGMRES preconditioned by LU on several periods
	Sensible combinations
	Model ‘A’ Summary
	Model ‘B’ Summary
	Model ‘C’ Summary
	Conclusions
	Future Work
	The End

