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Nonlinear Forward-Looking Model
gi,t (y1,t+s,... yN,t+s, y1,t,... yN,t,... y1,t-r,... yN,t-r) = 0

gt (yt +s,..., yt ,... yt-r) = 0    yt ≡ ( y1,t ,… yN,t )   gt ≡ ( g1,t ,… gN,t )

Note: can be transformed to 1-lag, 1-lead form:
gt (yt +1, yt , yt-1) = 0

Stacked-Time Solution
Choose a long time-horizon, T, and stack equations:

f (z) = 0 z ≡ (y1,…yT)    f ≡ (g1,…gT)

Given initial guess, z(0), find z* such that: f (z*) ≈ 0



Newton’s Method
Solve  f (z) = 0

Jacobian Matrix: J ≡ {∂fi/∂zj}
Preprocessing: Incidence Matrix,  Symbolic Derivatives

Newton step: ∆z(k) = − (J|z(k))-1 f(z(k))

Newton iteration: z(k+1) = z(k) − J(k)-1 f (k)

Damped Newton: z(k+1) = z(k) − α J(k)-1 f (k)



Jacobian Matrix Step: J-1 f
• Most expensive part of Newton’s Method
• Often solved by LU factoring:  J = LU

cost = O(n3) (standard “dense” LU)

• J can be large:  n=NT for stacked-time
e.g., 2000 eqns × 500 periods = 1,000,000 rows

• But J is very sparse:  
Most equations have only a few variables; 
the rest of the row is “hard” zero.



Main methods for solving sparse matrix
• Direct Sparse LU

– reduce cost by skipping calculations with zeros
– chose pivots to minimize fill-in but maintain accuracy
– may be implemented in three stages:

1)  [Analyze and] Factor (slow)
2)  Refactor same pattern (fast, if pivots still OK)
3)  Solve (fast)

• Nonstationary Iterative Solver
– iterations use matrix-vector product and “preconditioning”
– preconditioner must give fast approximate solution
– unsymmetric methods include FGMRES, CGS, BiCGstab



Sparse-LU Codes in TROLL
• MA30 (Duff & Reid, Harwell, circa 1980)

– very fast Refactor stage
– initial Factor step too slow for huge matrices

• UMFPACK 5.0  (Tim Davis, UFL, 2006)
– fast Factor, but Refactor is no faster
– modern code:  takes advantage of BLAS

• PARDISO  (Schenk & Gärtner, 2004)
– bundled with Intel Math Kernel Library 9.1
– fast Factor & fast Refactor
– can be inaccurate on ill-conditioned system



Sparse-LU Codes (cont.)

• “PARDCGS”:  PARDISO with CGS feature
– PARDISO for initial Factor and Solve
– skip Refactor
– solve by CGS, initial factoring as preconditioner

• “UMFITER”
– UMFPACK for initial Factor and Solve
– skip Refactor
– solve: FGMRES, initial factoring as preconditioner

Both give extremely fast Refactor but slow Solve.



Symbolic Jacobian for Stacked-Time
Derivatives of N equations with respect to N 

variables at all leads and lags:
← lags      current     leads →

yt–3 yt–2 yt–1 yt yt+1 yt+2

← variables(lags) →

↑
equations

↓

All squares are sparse, particularly the leads and lags.
“yt” square must be non-singular;  diagonal can be made nonzero



Stacked Jacobian has a regular structure:
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Each row of squares has the same pattern of nonzeros



Three ways to take advantage of sparsity:

1)  Full-Stack LU (FSLU, aka “OLDSTACK”)
– permute entire stack to block-triangular form
– solve minimal simultaneous blocks with sparse-LU
– one Solve per [Re]Factor



Full-Stack LU
Permute stack to minimal simultaneous blocks:

→

Typically one huge block



Three ways to take advantage of sparsity:

2)  Block-Band LU (BBLU, aka “NEWSTACK”)
– triangularize period-by-period using sparse-LU
– blocks fill in (~10%);  pattern becomes fixed
– numerical stability requires block-diagonal-dominance
– many Solve steps per [Re]Factor



Block-Band LU
Triangularize stack period-by-period:
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→

(while transforming RHS)
followed by block-back-solve



Three ways to take advantage of sparsity:

3) IterStack
– nonstationary iterative method on entire stack (FGMRES)
– sparse-LU on several periods at once as preconditioner
– FGMRES may fail to converge: inaccurate Newton step
– very many Solve steps per [Re]Factor



IterStack
FGMRES preconditioned by LU on several periods

t=1
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t=9
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t=T

In this example, 
LU is applied to 
5 periods at once 
and to the single 
leftover period 



Sensible combinations

• FSLU needs fast [Re]Factor for huge matrix
– UMFITER (faster than UMFPACK)
– PARDCGS (faster than PARDISO)

• BBLU needs fast Solve;  “small” matrices
– MA30 

• IterStack needs fast Solve;  matrices not huge
– MA30 



Three Test Models
• GIMF from the IMF
• QUEST from the CEC
• QPM from the Bank of Canada

Variants of:

Dubbed ‘A’, ‘B’ and ‘C’ (no particular order)

Equations Simultaneous Max Lag Max Lead

A 2141 965 -2 2

B 1736 1252 -3 3

C 1037 870 -7 1



Model ‘A’ Summary
• PARDISO & PARDCGS failed

– too ill-conditioned?
• UMFITER fast but ran out of memory

– ~2GB by 200 periods
• IterStack worked very well

– 50-100 FGMRES iterations (per Newton iter.)
– about as fast as UMFITER, much less memory

• BBLU worked OK
– less memory than IterStack, but a lot slower





Model ‘B’ Summary
• PARDISO & PARDCGS failed

– too ill-conditioned?
• UMFITER needed too much memory

– >2GB by 200 periods
• BBLU worked very well

– fast, moderate memory
– converged in 4 Newton iterations

• IterStack needed too many FGMRES iters
– ~500 FGMRES iterations, extra Newton iters (6)
– needed extra restart space so extra memory





Model ‘C’ Summary
• UMFITER needed too much memory

– >2GB by 200 periods
• IterStack failed

– >500 FGMRES iterations, too inaccurate
• BBLU worked OK

– moderate speed,  modest memory
• PARDCGS worked very well

– extremely fast
– converged in 5 Newton iterations (same as BBLU)





Conclusions
• No method is “best” for all models

– need to experiment for each model

• IterStack somewhat disappointing
– works well for some models, not others

• Modern sparse-LU codes make 
“OLDSTACK” competitive again.  
– but may need a lot of memory



Future Work
• IterStack improvements?  

– try other solvers (CGS, BiCGstab, QMR)
• less memory than FGMRES

– block-triangular preconditioner?  
• Other Sparse-LU codes?

– HSL MA50 (successor to MA30)
– MUMPS
– WSMP

• Use dynamics to shorten time horizon
– linearized around the steady-state
– will still need to be verified against full stack
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